Ciencias Básicas

La asignatura de Cálculo Diferencial se organiza en cinco temas:


El primer tema se inicia con un estudio sobre los números reales y sus propiedades básicas, así como la solución de problemas con desigualdades. Esto servirá de sustento para el estudio de las funciones de variable real.

El tema dos incluye el estudio del dominio y rango de funciones, así como las operaciones relativas a éstas. También las funciones simétricas, par e impar, escalonadas (definidas por más de una regla de correspondencia), crecientes y decrecientes, periódicas, de valor absoluto, etc.


En el tema tres se introducen la noción intuitiva de límite, así como la definición formal. Se aborda el cálculo de límites por valuación, factorización, racionalización, de límites trigonométricos y los límites laterales. Se incluyen casos especiales de límites infinitos y límites al infinito, así como asíntotas horizontales y verticales. El tema concluye con el estudio de la continuidad en un punto y en un intervalo.

La derivada, en el tema cuatro, se aborda de manera intuitiva obteniendo la pendiente de la recta tangente a una curva y como una razón de cambio. La definición de derivada permite deducir propiedades y reglas de derivación de funciones.

 

El último tema consiste principalmente en aplicar las propiedades y reglas de derivación para modelar y resolver problemas de razones de cambio y optimización específicos de cada área.

El estudiante debe desarrollar la habilidad para modelar situaciones cotidianas en su entorno. Es importante que el estudiante valore las actividades que realiza, que desarrolle hábitos de estudio y de trabajo para que adquiera características tales como: la curiosidad, la puntualidad, el entusiasmo, el interés, la tenacidad, la flexibilidad y la autonomía.

El Cálculo Diferencial contribuye principalmente para el desarrollo de las siguientes competencias genéricas: de capacidad de abstracción, análisis y síntesis, capacidad para identificar, plantear y resolver problemas, habilidad para trabajar en forma autónoma, habilidades en el uso de las TIC’s, capacidad crítica y autocrítica y la capacidad de trabajo en equipo.

La asignatura de Cálculo Integral se organiza en cuatro temas:


En el primer tema se inicia con el concepto del cálculo de áreas mediante sumas de Riemann como una aproximación a ella. Se incluye la notación sumatoria para que el alumno la maneje. La función primitiva (antiderivada) se define junto con el Teorema de Valor Intermedio y el primer y segundo Teorema Fundamental del Cálculo. Se estudia la integral definida antes de la indefinida puesto que aquélla puede ser abordada a partir del acto concreto de medir áreas.

En el segundo tema se estudia la integral indefinida y los principales métodos de integración. Cabe mencionar que en éste tema, en comparación con el cálculo diferencial, el cálculo de integrales no tiene un procedimiento único de desarrollo, sino que requiere poseer habilidades que permitan identificar el método que se puede aplicar en cada caso específico, requiriéndose para esto, enfocarse, desde un punto de vista global, en la estructura algebraica del integrando a fin de reconocer similitudes con una fórmula o bien un método que se pueda aplicar.

El tercer tema de aplicaciones de la integral trata del cálculo de áreas, volúmenes y longitud de arco. Otras aplicaciones de utilidad que se pueden abordar son los centroides, áreas de superficie, trabajo, etc. En el cálculo de áreas se considerarán además aquellas que requieren el uso de integrales impropias de ambos tipos. Todo lo anterior aplicado en el contexto de las ingenierías.

En el último tema de series se inicia con el concepto de sucesiones y series para analizar la convergencia de algunas series que se utilizan para resolver ciertas integrales. La serie de Taylor permite derivar e integrar una función como una serie de potencias. Cabe mencionar que, se pretende que el estudiante desarrolle habilidades para modelar situaciones cotidianas de su entorno. También se considera importante promover actividades que propicien el desarrolle hábitos de estudio y de trabajo y que además contribuyan a despertar la curiosidad, el entusiasmo, el interés, la tenacidad, la flexibilidad y la autonomía.

Se puede afirmar que el Cálculo Integral contribuye, en el alumno, al desarrollo de las siguientes competencias genéricas: capacidad de abstracción, análisis y síntesis, capacidad para identificar, plantear y resolver problemas, habilidad para trabajar en forma autónoma, habilidades en el uso de las TIC’s, capacidad crítica y autocrítica y la capacidad de trabajo en equipo.

La asignatura de Cálculo Diferencial se organiza en cinco temas.

El primer tema se inicia con un estudio sobre los números reales y sus propiedades básicas, así como la solución de problemas con desigualdades. Esto servirá de sustento para el estudio de las funciones de variable real.

El tema dos incluye el estudio del dominio y rango de funciones, así como las operaciones relativas a éstas. También las funciones simétricas, par e impar, escalonadas (definidas por más de una regla de correspondencia), crecientes y decrecientes, periódicas, de valor absoluto, etc.

En el tema tres se introducen la noción intuitiva de límite, así como la definición formal. Se aborda el cálculo de límites por valuación, factorización, racionalización, de límites trigonométricos y los límites laterales. Se incluyen casos especiales de límites infinitos y límites al infinito, así como asíntotas horizontales y verticales. El tema concluye con el estudio de la continuidad en un punto y en un intervalo.

La derivada, en el tema cuatro, se aborda de manera intuitiva obteniendo la pendiente de la recta tangente a una curva y como una razón de cambio. La definición de derivada permite deducir propiedades y reglas de derivación de funciones.

El último tema consiste principalmente en aplicar las propiedades y reglas de derivación para modelar y resolver problemas de razones de cambio y optimización específicos de cada área.

El estudiante debe desarrollar la habilidad para modelar situaciones cotidianas en su entorno. Es importante que el estudiante valore las actividades que realiza, que desarrolle hábitos de estudio y de trabajo para que adquiera características tales como: la curiosidad, la puntualidad, el entusiasmo, el interés, la tenacidad, la flexibilidad y la autonomía.

El Cálculo Diferencial contribuye principalmente para el desarrollo de las siguientes competencias genéricas: de capacidad de abstracción, análisis y síntesis, capacidad para identificar, plantear y resolver problemas, habilidad para trabajar en forma autónoma, habilidades en el uso de las TIC’s, capacidad crítica y autocrítica y la capacidad de trabajo en equipo.

La materia de Fisica General se imparte en la carrera de Ingenieria en sistemas computacionales

en el tercer semestre