La asignatura contribuye a desarrollar un pensamiento lógico-matemático al perfil del ingeniero y aporta las herramientas básicas para introducirse al estudio del cálculo vectorial y su aplicación, así como las bases para el modelado matemático. Además proporciona herramientas que permiten modelar fenómenos de contexto. La importancia del estudio del Cálculo Vectorial radica principalmente en que en diversas aplicaciones de la ingeniería, la concurrencia de variables espaciales y temporales, hace necesario el análisis de fenómenos naturales cuyos modelos utilizan funciones vectoriales o escalares de varias variables. La asignatura está diseñada de manera que el estudiante pueda representar conceptos, que aparecen en el campo de la ingeniería por medio de vectores; resolver problemas en los que intervienen variaciones continuas; resolver problemas geométricos en forma vectorial; graficar funciones de varias variables; calcular derivadas parciales; representar campos vectoriales que provengan del gradiente de un campo escalar, así como su divergencia y rotacional; resolver integrales dobles y triples; aplicar las integrales en el cálculo de áreas y volúmenes.

Con esta asignatura se espera desarrollar la capacidad de análisis y síntesis en actividades de modelación matemática; adquirir estrategias para resolver problemas; elaborar desarrollos analíticos para la adquisición de un concepto; pensar conceptualmente, desarrollar actitudes para la integración a grupos interdisciplinarios; aplicar los conocimientos adquiridos a la práctica y aprovechar los recursos que la tecnología ofrece, como el uso TIC’s. Esta asignatura sirve como base para otras asignaturas de las diferentes especialidades tales como: estática, dinámica y mecanismos, con la representación geométrica y álgebra de vectores; electromagnetismo y teoría electromagnética con el cálculo del gradiente, divergencia y rotacional de un campo vectorial; en termodinámica con el cálculo de derivadas parciales en las diferentes formas de la segunda ley; en fenómenos de transporte, transferencia de masa y transferencia de calor, con el cálculo de derivadas parciales y las ecuaciones que modelan estos fenómenos. Se pueden diseñar proyectos integradores con cualquiera de ellas.